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1. Introduction

Theories with extra dimensions have attracted enormous attention in particle physics in

the last decade. They not only provide new avenues for theoretical explorations, but also

offer the exciting prospect of playing an active role in the upcoming collider experiments.

Starting with the revelation that extra dimensions could be as large as the submillimeter

distance and the scale of quantum gravity could be at TeV [1 – 3], it was realized that

warped extra dimensions [4, 5] could have novel features to address issues ranging from

electroweak to gravitational physics. Ever since there has been an explosion in the number

of extra dimensional models inspired by either the large or warped extra dimensions.

From the four-dimensional (4D) perspective extra dimensions, if there, manifest them-

selves through a series of KK modes for every particle that propagates in the bulk. Typically

one starts with a given metric in the extra dimensions, assumes some boundary conditions

for the bulk fields, and then computes the KK masses from the metric. Sometimes it is

assumed that all the standard model (SM) fields are confined on a three-brane, in which

case only the graviton would have a massive spin-2 KK tower, while sometimes all or part

of the SM could live in the extra dimensions. In most cases the size of the extra dimensions

is at TeV scale or higher, suggesting the first KK mass in the TeV order as well. If this is

the case, it seems that the second or higher KK mode might lie beyond the reach of the

Large Hadron Collider (LHC). An interesting exception is the Universal Extra Dimensions

(UEDs) [6, 7], in which not only all the SM particles propagate in the compactified bulk,

giving the hope that one may be able to observe another copy of SM in the first KK level,

but also the lower bound on the size of the extra dimensions is only at 300 GeV or so,

raising the attractive possibility that more than one KK level can be discovered at the

LHC.
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On a separate front, given the imminent start of the LHC, there are recently strong

interests in the inverse problem of interpreting the underlying physics from LHC data [8].

The goal is to study the map from the signature space of LHC to the parameter space

of theoretical models. In the context of extra dimensional models, the traditional forward

approach is to study phenomenological consequences of a given model in a particular space-

time background, such as computing the KK masses from the postulated metric. In this

paper we consider the LHC inverse problem in the extra dimensional context. We will

focus on the most obvious 4D observable, the KK masses, and ask how one can extract

geometrical properties of the extra dimensions. We are interested in questions like, if one

assumes a compactified extra dimension, what can we learn from the mass of the first KK

mode? What about the second KK mass? Even if we knew all the KK masses, would the

shape of the extra dimension be uniquely determined?

It is our purpose to study the aforementioned questions in this paper, which is organized

as follows. In section 2 we set the stage by considering a five-dimensional U(1) Yang-Mills

theory on a finite interval, as well as its KK decompositions. By transforming the eigenvalue

equation into a Schrödinger equation, in section 3 we use the time-independent perturbation

theory, as well as the reflection symmetry of the background geometry, to study the inverse

problem assuming the Neumann boundary conditions (BCs). In section 4 we consider a

general background geometry without assuming any symmetry property. The treatment

here closely follows the mathematical technique of solving the Dirichlet inverse eigenvalue

problem for flat background in ref. [9]. The approach in this section also allows us to

extend the study to other types of BCs, which is done in section 5. Then in section 6 we

conclude with some discussion.

2. U(1) gauge theory on an interval

We start with assuming 4D Lorentz invariance and one finite extra dimension which can be

thought of as an interval. Without loss of generality, the metric can be written in warped

form

ds2 = gMN dxMdxN = e2A(z)
(

ηµνdxµdxν − dz2
)

, 0 ≤ z ≤ L, (2.1)

where ηµν = diag(1,−1,−1,−1) and we call A(z) the warp factor. We also use the conven-

tion that the capital Roman letters M,N = 0, 1, 2, 3, z are contracted with gMN whereas

the Greek letters µ, ν = 0, 1, 2, 3 are contracted with ηµν . When the warp factor is constant,

the resulting space is a flat extra dimension compactified on a circle, z ' z + 2L, with the

projection, z ' −z, which is the S1/Z2 orbifold. Because of the orbifold projection all the

fields living in the bulk must be either even or odd under z → −z. Even (odd) fields have

Neumann (Dirichlet) BCs at the boundaries z = 0, L. Usually this is the main motivation

for considering an orbifold compactification, because the zero modes for the odd fields are

projected out, which is crucial in terms of getting a chiral zero mode for the fermion if

the SM is to live in the bulk. We wish to consider the possibility that the warp factor is

non-trivial.
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As an illustration let us consider an abelian vector field AM (x, z) propagating on an

interval 0 ≤ z ≤ L [10, 11]:

S =

∫ √
g d4xdz

−1

4g2
5

FMNFMN (2.2)

=

∫

d4x

∫ L

0
dz

eA(z)

g2
5

(

−1

4
FµνFµν +

1

2
(∂zAµ − ∂µAz)

2

)

. (2.3)

In this paper we will only be concerned with classical physics and neglect the gauge-fixing

and ghost terms. We will also choose a gauge where Az = 0 and the Neumann BCs for Aµ

A′
µ(x, 0) = A′

µ(x,L) = 0, (2.4)

where ′ denotes ∂z. The Neumann BCs are normally chosen to ensure a massless zero

mode. However, there could be other types of BCs if there are bulk mass terms or scalars

at the boundaries of the interval [12], so later we will generalize the results to Dirichlet as

well mixed BCs. Performing the KK expansion

Aµ(x, z) =
∑

n

An
µ(x)fn(z), (2.5)

the action becomes diagonal in the KK basis

S =

∫

d4x
∑

n

(

−1

4
Fn

µνFn µν +
1

2
m2

nAn
µAn µ

)

, (2.6)

if the KK profiles fn(z) satisfy the equations

∂z

(

eA(z)∂zfn

)

+ m2
neA(z)fn = 0, f ′

n(0) = f ′
n(L) = 0 ; (2.7)

1

g2
5

∫ L

0
dz eA(z)fnfm = δmn. (2.8)

From now on we will ignore the 1/g2
5 factor in the orthogonality condition as it is irrelevant

to our analysis. Eq. (2.7) is an equation of Sturm-Liouville type with Neumann BCs.

The question we are interested is essentially the inverse eigenvalue problem of the above

equation: given the mass eigenvalues, what can we learn about the warp factor A(z)?

To proceed, it is convenient to transform eq. (2.7) into a non-relativistic Schrödinger

equation [5]:

fn(z) = e−A(z)/2ψn(z), (2.9)

−ψ
′′

n + V (z)ψn = m2
nψn , (2.10)

V (z) =
1

2
A′′ +

1

4
(A′)2, (2.11)

We will call V (z) the KK potential associated with the warp factor A(z). It is worth

noting that in eq. (2.9) the BCs of the original KK wave functions fn(z) do not translate

simply into the BCs of the new ψn(z); the boundary values of A(z) are involved as well.
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For example, Neumann BCs for the fn translate into Neumann BCs for the ψn only if

one further assumes A′(0) = A′(L) = 0. On the other hand, in solving for the warp

factor from a given KK potential in eq. (2.11), the assumed BCs for the warp factor would

presumably give a unique solution. For example, in the flat space case, V = 0, the BCs

A′(0) = A′(L) = 0 give a unique, albeit trivial, answer A(z) = 0. Otherwise the general

solution for V (z) = 0 in eq. (2.11) looks like A(z) = c1 + 2 log(z + c2), where c1 and c2

are integration constants. Therefore from now on we will assume suitable BCs for A(z) so

that the BCs translate in eq. (2.9).

3. Neumann inverse problem

In this section we study the Neumann inverse spectral problem of the Schrödinger equation

−ψ′′ + V ψ = λψ, ψ′(0) = ψ′(L) = 0. (3.1)

The idea is that when the KK potential V (z) can be considered as perturbations on the flat

background, V = 0, we can use time-independent perturbation theory of the Schrödinger

equation.

In the flat space limit, the unperturbed solutions are

λ(0)
n =

n2π2

L2
, ψ(0)

n =

√

2

L
cos

(nπ

L
z
)

, (3.2)

from which we see there is a massless zero mode with constant wave function. To the first

order in perturbation, the KK masses and wave functions are, for n > 1,

λ(1)
n =

∫ L

0
dz

[

ψ(0)
n (z)

]2
V (z)

=
1

L

∫ L

0
dz V (z) +

1

L

∫ L

0
dz cos

(

2nπ

L
z

)

V (z), (3.3)

ψ(1)
n (z) =

∑

m6=n

ψ
(0)
m (z)

λ
(0)
n − λ

(0)
m

∫ L

0
dt ψ(0)

n (t)ψ(0)
m (t)V (t). (3.4)

The zero mode n = 0 is a special case and needs to be singled out from perturbation

because its masslessness is guaranteed by the 4D gauge invariance.1 Indeed, the constant

wavefuction is always a solution with zero eigenmass in eq. (2.7), which implies the exact

zero mode wavefunction ψ0(z) = exp(A/2). On the other hand, if we had chosen differen

BCs, there would have been no massless zero mode and no need to single it out in per-

turbation. From eq. (3.3) we immediately see that the first-order corrections to flat-space

KK masses are related to coefficients of the Fourier cosine series of the KK potential. In

particular, the correction to the nth eigenmass is related to the sum of the average of the

KK potential and the nth coefficient of Fourier cosine series. Therefore, higher KK masses

probe the metric at shorter distances, in accordance with usual intuition.

1I am grateful to Yuri Shirman and Arvind Rajaraman for bringing this issue to my attention.
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One important observation following from eq. (3.3) is the fact that the KK masses

are only sensitive to the even part of the KK potential with respect to reflections on

the mid-point of the interval z → L − z. Unless this Z2 reflection is a symmetry of

the extra dimension, KK masses alone are not sufficient to uniquely determine the KK

potential. Nevertheless, such a geometric Z2 reflection is none other than the KK parity

in UEDs [6, 7]. In UEDs with one extra dimension the SM propagate in 5D compactified

on the orbifold S1/Z2. For theories compactified on a circle S1, momentum conservation

in the 5th direction implies conservation of the KK number at each interaction vertex.

When considering S1/Z2, however, the orbifold has fixed points at the boundaries which

break the translational invariance, and hence momentum conservation, in the 5th direction.

Moreover, quantum corrections in the bulk induces divergent terms on the two boundaries

that renormalize localized 4D interactions there [13, 14]. In the end only a Z2 subgroup

of the translational invariance, that is reflections with respect to the mid-point z = L/2,

is preserved, which is called KK parity [7]. For phenomenological considerations, the KK

parity is defined as a flip of the line interval about the center z = L/2 combined with

a Z2 transformation that changes the sign of all fields odd under the orbifold projection,

which are fields that have Dirichlet BCs. This is so that all the even number KK modes

are invariant, while the odd number KK modes change sign, under the KK parity. Our

finding is that for extra dimensional models that have the KK parity, the shape of the

extra dimension is completely determined by measurements of KK masses.

A new Z2 parity for theories beyond SM, under which the SM is even and (some of) the

new particles are odd, is in fact very well-motivated phenomenologically. Perhaps the most

prominent feature of such a Z2 parity is suppressions of precision electroweak contributions

from the new particles [15], rendering their masses light at or below 1TeV and allowing

for a solution to the little hierarchy problem. Another important feature is the existence

a stable particle, that is the lightest particle charged under the parity, which is a good

candidate for dark matter if it is electrically neutral. Examples of such a parity, other

than the KK parity, are the R parity in supersymmetry and the T parity in little Higgs

models [15 – 17].

Without KK parity, it is natural to ask is how to determine the coefficients of the

Fourier sine series of the KK potential from four-dimensional data. To this end we notice

that the coefficient of the Fourier sine series

sn =
2

L

∫ L

0
dz V (z) sin

(

2nπz

L

)

(3.5)

only depends on the KK odd part of V (z), and as such is a measure of the breaking of

the KK parity. Therefore any quantity that is sensitive to violations of KK parity will be

related to the Fourier sine coefficients. One such quantity is the absolute value of the ratio

|ψn(z)/ψn(L − z)|. If KK parity is a good symmetry and the geometry is symmetric with

respect to reflections about the mid-point of the interval, then the ratio should be unity.

The above argument suggests the definition

κn(z) = log

∣

∣

∣

∣

ψn(z)

ψn(L − z)

∣

∣

∣

∣

, (3.6)
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which vanishes when KK parity is conserved. Using eqs. (3.2) and (3.4), we can derive an

expression for κn(z) in perturbation:

κn(z) =
∑

m6=n

1 − (−1)m−n

λ
(0)
n − λ

(0)
m

ψ
(0)
m (z)

ψ
(0)
n (z)

∫ L

0
dt ψ(0)

m (t)ψ(0)
n (t)V (t) (3.7)

=
∑

m6=n

1 − (−1)m−n

(n2 − m2)(π2/L2)

cos mπz
L

cos nπz
L

2

L

∫ L

0
dt cos

(

mπt

L

)

cos

(

nπt

L

)

V (t). (3.8)

In the above, because of the coefficient 1 − (−1)m−n, the summation effectively only runs

over those m’s for which m+n is an odd integer. For this case, the cosines in the integrand

has odd parity under z → L − z and the integral is non-vanishing only if V (t) has a KK

odd component. In principle, one could work out the Fourier sine series of the integrand

in eq. (3.8)

cos

(

mπt

L

)

cos

(

nπt

L

)

=

√

2

L

∑

k

ak sin
2πkt

L
, (3.9)

from which a relation between κn(z) and the sn in eq. (3.5) follows. However, following a

suggestion for a similar quantity for the Dirichlet inverse problem in [9], one can show that

κn(0) is directly proportional to the Fourier sine coefficients sn,

κn(0) =
∑

m6=n

1 − (−1)m−n

(n2 − m2)(π2/L2)

2

L

∫ L

0
dt cos

(

mπt

L

)

cos

(

nπt

L

)

V (t) (3.10)

=
L

2πn

∫ L

0
dz V (z) sin

(

2nπz

L

)

, (3.11)

if one uses the identity

L

nπ
sin

nπz

L
=

∑

m6=n

2

L
cos

mπz

L

1 − (−1)m−n

(n2 − m2)(π2/L2)
, 0 ≤ z ≤ L. (3.12)

One way to derive the above identity is to use the Green’s function with Neumann BCs

G(z, z′) =
∑

n

ψ
(0)
n (z)ψ

(0)
n (z′)

λ − λ
(0)
n

, (3.13)

−∂2
zG(z, z′) − λG(z, z′) = δ(z − z′), (3.14)

and then plug into

sin
√

λz′ =

∫ L

0
dz δ(z − z′) sin

√
λz, (3.15)

which is just the expansion of the sine function in the complete basis {ψ(0)
n (z), 0 ≤ z ≤ L}.

In terms of the original eigenfunctions in eq. (2.9),

log

∣

∣

∣

∣

fn(0)

fn(L)

∣

∣

∣

∣

= −1

2
(A(0) − A(L)) +

L

2πn

∫ L

0
dz V (z) sin

(

2nπz

L

)

, n > 0. (3.16)
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That is κn(0) measures the difference in the boundary values of the warp factor A(z), as well

as the Fourier sine coefficients of the KK potential. Unfortunately, it appears that the ratio

of the boundary values of the wave functions is not easily accessible from the experimental

perspective; one needs to be able to resolve the extra dimension and make a comparison

at two opposite points. What is worse, as mentioned earlier quantum corrections in the

bulk will induce logarithmically divergent contributions to the gauge kinetic terms that are

localized on the boundaries [13, 14]. Thus from the viewpoint of 4D effective field theories,

the values of the wave functions on the orbifold fixed points may even be arbitrary and

theoretically incalculable due to their UV sensitivity.

On the other hand, there are certainly low-energy observables that probe the breaking

of KK parity. Suppose we extend the U(1) gauge theory to a non-abelian theory, then

there are three-point couplings glmn as well as four-point couplings gklmn of different KK

modes, where the indices denote the KK numbers. If KK parity is a good quantum number,

glmn = 0 for odd integral l+m+n and gklmn = 0 for odd integral k+ l+m+n. A non-zero

value for either of them would indicate breaking of KK parity and potentially probe the

KK odd part of V (z). Nevertheless, the relations between the three/four-point couplings

and the Fourier sine coefficients are contaminated by the warp factor itself. As an example,

consider the three-point couplings

glmn ∝
∫ L

0
dz eA(z)fl(z)fm(z)fn(z) (3.17)

=

∫ L

0
dz e−A(z)/2ψl(z)ψm(z)ψn(z). (3.18)

The product of the ψ(z)’s in the integrand could be computed in perturbation using ψ(0)(z).

It is also possible to express the product in the Fourier sine series, which however would

involve an infinite number of terms. Unfortunately, the warp factor also goes into the inte-

grand. Thus without knowing the warp factor a priori, it seems difficult, if not impossible,

to actually perform the integration and extract the desired Fourier coefficients from the

three-point couplings. It is in fact possible to eliminate the warp factor in the integrand

in eq. (3.17) by taking advantage of the fact that the zero mode wavefunction is constant.

For example, choosing l = 0 we have

g0mn ∝
∫ L

0
dz ψm(z)ψn(z) (3.19)

which does not involve the warp factor explicitly. Nevertheless, it is simple to check in

perturbation that the terms linear in the KK potential all cancel and only O(V 2) terms

survive. Again it is very difficult to extract the Fourier sine coefficients this way. To sum

up, the three/four-point couplings probe the KK odd part of the warp factor as well as the

KK potential, and in general it seems very difficult to disentangle these two effects in the

couplings. On the other hand, if empirically it is found that all these KK odd glmn’s and

gklmn’s are vanishingly small, as would be preferred from precision electroweak constraints,

then one could just use the eigenmasses to extract the Fourier cosine coefficients of the KK

potential to reconstruct the metric.

– 7 –



J
H
E
P
1
0
(
2
0
0
6
)
0
5
4

4. General background

In this section we discuss the situation when the warp factor cannot be considered as per-

turbations on flat spacetime V (z) = 0. One example is the Anti-di Sitter (AdS) background

employed in [4, 5], for which the metric is

ds2 =

(

1

kz

)2
(

ηµνdxµdxν − dz2
)

, (4.1)

where k is the AdS curvature scale. The KK potential for the AdS background is

VAdS(z) =
3

4z2
. (4.2)

The KK potential for the AdS space apparently does not respect KK parity, and therefore

the first KK mass is generally required to be heavier than 1 TeV or higher. Moreover,

it does not appear proper to consider the above KK potential as a perturbation on the

flat background V = 0 because of the singularity at z = 0; the integral of VAdS diverges

in the interval 0 ≤ z ≤ L. On the other hand, if the warp factor is exactly AdS, then

the KK spectrum is given by roots of Bessel functions [18, 19] and should be identifiable.

Therefore in the following we assume a KK spectrum that can be roughly, but not exactly,

identified with that coming from a known background such as the AdS, suggesting that the

real geometry only slightly deviates from the known background and could be considered

as perturbations. Our construction in the following is adapted from that in [9], which

specifically considers Dirichlet inverse spectral problem for V (z) that is regular on the

interval.

Assuming the warp factor in the metric to be of the form

A(z) = A0(z) + A1(z), 0 ≤ z ≤ L, (4.3)

where A0(z) is a known background and A1(z) is a small fluctuation. The KK potential is

then

V (z) = V0(z) + V1(z), (4.4)

V0 =
1

2
A′′

0 +
1

4
(A′

0)
2, (4.5)

V1 =
1

2
(A′

0A
′
1 + A′′

1) +
1

4
(A′

1)
2. (4.6)

That is, we would like to consider the Neumann inverse eigenvalue problem of the following

differential equation

− y′′ + (V0 + V1)y = λy, 0 ≤ z ≤ L, (4.7)

when V1 can be considered as perturbations. One first considers the unperturbed equation

− y′′ + V0 y = λy, (4.8)

– 8 –
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and constructs the eigensystem {λ(0)
n , ψ

(0)
n } satisfying the Neumann BCs. Then as before

the first-order perturbed eigenvalues are

λn = λ(0)
n + λ(1)

n

= λ(0)
n +

∫ L

0
dz[ψ(0)

n (z)]2V1(z). (4.9)

Therefore, once the first N KK masses are measured, the above equation leaves N con-

straints on the KK potential. In general, the eigenvalues λn and eigenfunctions ψn are

both functionally dependent on the perturbation V1. One can compute δλn/δV1 by taking

the functional derivative δ/δV1 of the equation2

− ψ′′
n + (V0 + V1)ψn = λnψn, ψ′

n(0) = ψ′
n(L) = 0. (4.10)

Interchanging differentiations with respect to z and V1, multiplying both sides by ψn, and

integrating we find

∫ L

0
dz ψn(z)

[

− d2

dz2
+ (V0 + V1)

]

δψn(z)

δV1(z′)
=

−[ψn(z′)]2 +
δλn(V1)

δV1(z′)
+

∫ L

0
dz λnψn(z)

δψn(z)

δV1(z′)
. (4.11)

Since the differential equation (4.10) is self-adjoint, we arrive at

δλn(V1)

δV1(z)
= [ψn(z)]2, (4.12)

which is indeed satisfied by eq. (4.9) in perturbation. This result will be useful later.

The lesson learned from the previous section, is that the eigenmasses only give limited

information on V1; in the flat space case only the Fourier cosine coefficients are given by

the eigenmasses. More information can be extracted by looking at the eigenfunctions. To

do so we need to consider solutions Y = {y1, y2} of eq. (4.7) satisfying the following initial

conditions

y1(0, λ;V1) = y′2(0, λ;V1) = 1 , (4.13)

y′1(0, λ;V1) = y2(0, λ;V1) = 0 , (4.14)

where we have emphasized the dependence of the solutions on λ and V1. It is clear that

every solution of eq. (4.7) can be written as y(z) = y(0)y1(z) + y′(0)y2(z). For example,

with Neumann BCs we have

ψn(z) =
y1(z, λn;V1)

||y1(z, λn;V1)||
, y1(z, λn;V1) =

ψn(z)

ψn(0)
. (4.15)

where || · || means the norm of the function in the Hilbert space. In addition, eq. (4.12)

becomes
δλn(V1)

δV1(z)
=

[y1(z, λn;V1)]
2

||y1(z, λn;V1)||2
. (4.16)

2Note that for the purpose of taking functional derivative V0 and V1 are independent variables.
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The fundamental solution Y also has the property that the Wronskian determinant is unity

W (Y ) = det

∣

∣

∣

∣

∣

y1 y2

y′1 y′2

∣

∣

∣

∣

∣

= 1. (4.17)

This can be proven by showing that dW/dz = 0, which follows from the fact that Y satisfies

eq. (4.7), and using W (0) = 1. Then the solution of the inhomogeneous equation

− y′′ + (V0 + V1)y = λy − f(z) (4.18)

is given by

y(z, λ;V1) =

∫ z

0
dt [y1(t)y2(z) − y1(z)y2(t)] f(t). (4.19)

Our objective is to show that the quantity

κn(V1) = − log |y1(L, λn;V1)| (4.20)

provides additional information on V1. In the flat space case, using eq. (4.15), we see that

the above definition agrees with eq. (3.6) and is related to the Fourier sine coefficient of

the KK potential.

We need three identities to complete the proof. The first one is eq. (4.12). For the

second we need to compute the functional derivative of Y = {y1, y2} with respect to V1.

Taking δ/δV1(z
′) in eq. (4.7) and interchanging the functional derivative with d/dz, we

have

−
(

δY (z)

δV1(z′)

)′′

+ (V0 + V1)
δY (z)

δV1(z′)
= λ

δY (z)

δV1(z′)
− δ(z − z′)Y (z), (4.21)

which is of the form in eq. (4.18). Utilizing eq. (4.19) we obtain

δY (z)

δV1(z′)
=

∫ z

0
dt [y1(t)y2(z) − y1(z)y2(t)] δ(z

′ − t)Y (t)

=
[

y1(z
′)y2(z) − y1(z)y2(z

′)
]

Y (z′) I[0,z](z
′), (4.22)

where the indicator function I is such that

I[0,z](z
′) = 1 if z′ < z,

= 0 if z′ > z. (4.23)

From eq. (4.22) we could derive a similar expression for δY ′(z)/δV1. The last identity is

∂Y/∂λ. Again differentiating eq. (4.7) with respect to λ, interchanging the derivatives, and

making use of eq. (4.19), we have

∂Y (z)

∂λ
= −

∫ z

0
dt [y1(t)y2(z) − y1(z)y2(t)] Y (t). (4.24)

Using eqs. (4.16), (4.22), (4.24), it only takes some algebra to show that

δκn(V1)

δV1(z′)
= − 1

y1(L)

(

∂

∂λ
y1(L, λ;V1)

δλ

δV1(z′)
+

δ

δV1(z′)
y1(L, λ;V1)

)∣

∣

∣

∣

λ=λn

(4.25)

= y1(z
′, λn;V1)y2(z

′, λn;V1) − [ψn(z′)]2
∫ L

0
dt y1(t, λn;V1)y2(t, λn;V1).
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We then have

κn(V1) − κn(0) =

∫ 1

0
dt

d

dt
κn(tV1)

=

∫ 1

0
dt

∫ L

0
dz

δκn(tV1)

δ(tV1)
V1(z)

=

∫ L

0
dz

δκn(0)

δV1
V1(z) + O(V 2

1 ), (4.26)

where we have used the definition of total derivative on a functional in the Hilbert space:

d

dε
F [q + εv]

∣

∣

∣

∣

ε=0

=

∫ L

0
dz

δF

δq
v. (4.27)

Now κn(V ) can be computed in perturbation:

κn(V1) − κn(0) =

∫ L

0
dz y1(z, λ(0)

n ; 0)y2(z, λ(0)
n ; 0)V1(z)

−λ(1)
n

∫ L

0
dt y1(t, λ

(0)
n ; 0)y2(t, λ

(0)
n ; 0). (4.28)

For the flat space case V0 = 0, λn = n2π2/L2 and

y1(z, λ; 0) = cos
√

λz, y2(z, λ; 0) =
sin

√
λz√

λ
. (4.29)

Furthermore, κn(0) = 0 and eq. (4.28) gives the Fourier sine coefficients of V1.

5. Other types of boundary conditions

In this section we extend the results so far to other types of BCs, the Dirichlet and mixed

BCs, with a focus on the flat space background. These BCs might be useful for bulk scalars

or fermions on an interval. The mixed BCs actually do not arise in orbifold compactifi-

cation for its fields do not have a definite parity under the orbifold projection z → −z.

Nevertheless, if we are only concerned with a field theory on an interval, then it could be

consistent.

The identities we derived so far, eqs. (4.12), (4.22), (4.24), do not depend on the BCs

we choose. However, the eigenvalues and eigenfunctions in eq. (3.2), as well as eq. (4.16), do

depend on the Neumann BCs chosen. To generalize to other types of BCs, the important

observation is the following:

• If ψn(z) = y1(z, λn)/||y1(z, λn)||,

− δ

δV1(z′)
log |y1(L, λn;V1)| = − δ

δV1(z′)
log |y′1(L, λn;V1)| =

y1(z
′, λn;V1)y2(z

′, λn;V1) − [ψn(z′)]2
∫ L

0
dt y1(t, λn;V1)y2(t, λn;V1). (5.1)
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• If ψn(z) = y2(z, λn)/||y2(z, λn)||,

− δ

δV1(z′)
log |y2(L, λn;V1)| = − δ

δV1(z′)
log |y′2(L, λn;V1)| = (5.2)

−y1(z
′, λn;V1)y2(z

′, λn;V1) + [ψn(z′)]2
∫ L

0
dt y1(t, λn;V1)y2(t, λn;V1).

These equations can be proven along the line of proving eq. (4.25). Now we can summarize

the results for the Dirichlet as well mixed BCs in the flat background, using the notation

λn = n2π/L2 and λn+1/2 = (n + 1/2)2π2/L2,

• Dirichlet BCs ψ(0) = ψ(L) = 0:

m2
n = λn, ψ(0)

n (z) =

√

2

L
sin

√

λnz =
y2(z, λn; 0)

||y2(z, λn; 0)|| , (5.3)

λ(1)
n =

1

L

∫ L

0
dz V (z) − 1

L

∫ L

0
dz V (z) cos 2

√

λnz, (5.4)

κn(V ) ≡ − log |y′2(L, λn;V )| = − log

∣

∣

∣

∣

ψ′
n(L)

ψ′
n(0)

∣

∣

∣

∣

= κn(0) − L

2πn

∫ L

0
dz V (z) sin 2

√

λnz, (5.5)

κn(0) = − log |y′2(L, λn; 0)| = 0. (5.6)

• Mixed BCs (I) ψ(0) = ψ′(L) = 0:

m2
n = λn+ 1

2

, ψ(0)
n (z) =

√

2

L
sin

√

λn+ 1

2

z =
y2(z, λn+ 1

2

; 0)

||y2(z, λn+ 1

2

; 0)|| , (5.7)

λ(1)
n =

1

L

∫ L

0
dz V (z) − 1

L

∫ L

0
dz V (z) cos 2

√

λn+ 1

2

z, (5.8)

κn(V ) ≡ − log |y2(L, λn+ 1

2

;V )| = − log

∣

∣

∣

∣

ψn(L)

ψ′
n(0)

∣

∣

∣

∣

= κn(0) − L

2π(n + 1/2)

∫ L

0
dz V (z) sin 2

√

λn+ 1

2

z, (5.9)

κn(0) = − log |y2(L, λn+ 1

2

; 0)| =
1

2
log λn+ 1

2

. (5.10)

• Mixed BCs (II) ψ′(0) = ψ(L) = 0:

m2
n = λn+ 1

2

, ψ(0)
n (z) =

√

2

L
cos

√

λn+ 1

2

z =
y1(z, λn+ 1

2

; 0)

||y1(z, λn+ 1

2

; 0)|| , (5.11)

λ
(1)

n+ 1

2

=
1

L

∫ L

0
dz V (z) +

1

L

∫ L

0
dz V (z) cos 2

√

λn+ 1

2

z, (5.12)

κn(V ) ≡ − log |y′1(L, λn+ 1

2

;V )| = − log

∣

∣

∣

∣

ψ′
n(L)

ψn(0)

∣

∣

∣

∣
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= κn(0) +
L

2π(n + 1/2)

∫ L

0
dz V (z) sin 2

√

λn+ 1

2

z, (5.13)

κn(0) = − log |y′1(L, λn+ 1

2

; 0)| = −1

2
log λn+ 1

2

. (5.14)

6. Discussion and conclusion

In this paper we studied the problem of reconstructing the metric of the extra dimension

using four-dimensional data. When the geometry can be considered as perturbations in a

flat background, we showed that the deviation of each KK mass from the exact flat space

limit gives the Fourier cosine coefficient of a KK potential, which is related to the warp

factor through a non-linear second-order differential equation. If the KK parity, reflections

about the mid-point of the extra dimension, is a good symmetry of the theory, then the

Fourier sine coefficient of the KK potential vanishes and the metric can be determined

by measuring KK masses alone. On the other hand, if KK parity is not a symmetry,

then the boundary values of each wave function are necessary to determine the Fourier

sine coefficient of the KK potential. Such information, nonetheless, seems challenging to

obtain experimentally for one needs to resolve the size of the extra dimension first and then

make comparison of the wave function at two opposite ends. If there are brane localized

interactions at the boundaries, as required by quantum corrections coming from bulk fields,

then it might be possible to probe the values of the wave functions at the boundaries.

However, because of the UV sensitivity of these brane localized terms, their strength is not

calculable within the low-energy effective theory. There are averaged quantities sensitive

to the breaking of KK parity such as the three- and four-point couplings of the non-

abelian gauge fields. However these couplings generally involve many different Fourier sine

coefficients of the KK potential. Moreover, they also probe the KK odd part of the warp

factor and, therefore, do not provide direct access to Fourier coefficients of the KK potential

without prior knowledge of the warp factor.

A general background geometry other than the flat space is also considered in this

paper. The possibility arises when the KK potential of the geometry has non-integrable

singularities on the interval and cannot be considered as perturbations in the flat back-

ground. One example is the AdS geometry whose KK potential grows like 1/z2 as z → 0.

In this situation three types of BCs: Neumann, Dirichlet, and the mixed, are considered.

Generically information on the behavior of the wave function at the boundaries of the extra

dimension provides constraints on the KK potential in addition to those coming from the

KK mass.

To implement the idea in this paper in the real world, one needs to first identify the

background spacetime on which the geometry can be considered fluctuations. For example

whether the KK spectrum roughly fits the flat space spectrum, which is evenly-spaced, or

the AdS spectrum, which is the root sequence of Bessel functions. Obviously this would

require measurements of several KK masses, even though realistically it is not clear one

would be able to measure more than one KK level, if at all, in the near future, as the

KK mode is generally expected to be heavier than 1 TeV from various constraints. An

exception in this regard is the UEDs, for which the compactification scale can be as low
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as 300 GeV, raising the prospect of observing several KK levels. In UEDs this is possible

because of the KK parity, a Z2 reflection about the mid-point of the extra dimension,

which is strongly suggested by precision electroweak measurements. If KK parity is indeed

a good symmetry, even for non-flat geometry, then the measurement of N KK masses could

provide useful information on the first N Fourier cosine coefficients of the KK potential, if

the KK spectrum fits approximately that from a flat extra dimension. However, because

it is the deviation from n2π2/L2, the flat space limit, that gives the sum of the average as

well as the nth Fourier cosine coefficient (see eq. (3.3)), and the size of the extra dimension

L is unlikely to be known a priori, in reality one could probably only hope for an (N + 2)-

parameter fit using N measured KK masses. On the other hand, it will be important to

understand the extent of KK parity violation through KK odd processes like the decay of

the first KK mode into two zero modes, or inelastic scattering of two zero modes into one

first KK mode and one zero mode. These information will be an indication on the size of

the Fourier sine coefficients of the KK potential.

Another approach to the inverse problem discussed in this paper is to discretize the

Sturm-Liouville equation and turn the problem into the matrix inverse eigenvalue prob-

lem. Physically speaking this amounts to using deconstruction [20, 21] to approximate

the continuous extra dimension. However, there is some subtlety due to the mismatch of

eigenmasses in the high energy between the deconstruction and the continuous case. Such

an approach is currently under investigation [22].
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